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Abstract
We present Mu, a domain specific language to describe and
develop microservices in Haskell. At its core, Mu provides a
type level representation of schemas, which we leverage in
various ways. These schemas can be automatically imported
from industry-standard interface definition languages.
Mu uses many of the type level extensions to GHC, and

techniques such as (data type) generic programming and at-
tribute grammars. Apart from the description of the library,
we discuss a series of shortcomings in current GHC/Haskell,
mostly related to the friendliness of the exposed library in-
terface once complex types enter the scene.

CCS Concepts: • Software and its engineering→ Func-
tional languages;Domain specific languages; • Theory
of computation→ Type structures.
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1 Introduction
In the last decades Haskell as offered by GHC – the de facto
standard compiler for Haskell – has outgrown from a sim-
ple “Hindley-Milner plus type classes” to give much more
expressive power, especially for type level and generic pro-
gramming. Functional dependencies [29], type families [3, 9],
or data type promotion [32], make the world of types at least
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as interesting as that of terms. More powerful views on data
types [15, 16, 18] usually build on those new mechanisms.
Embedded (or internal) domain specific languages (ED-

SLs) have greatly benefited from these features. Most EDSLs
come with rules and invariants that can be enforced by the
compiler, if one is able to express them at the type level.
Examples abound: information security [22], hardware spec-
ifications [14], structure-aware diffing [19], or REST-based
services [17].

In this paper we present Mu,1 a EDSL to develop microser-
vices. The primary goal of Mu is to provide a unified interface
to a range of protocols and serialization formats, including
gRPC2 and GraphQL,3 a goal shared between the different in-
carnations of the Mu library in different languages. A second
goal of the Haskell version is to introduce type safety based
on the different “service or schema definition languages” pro-
vided by those protocols. You can even take a definition of a
gRPC service and then serve it using GraphQL.

To implement Mu we have used several techniques stem-
ming from academia, including the aforementioned generic
and type level programming to describe schemas, but also at-
tribute grammars to define what a “server” for such a schema
is (Section 2). An important observation is that we can re-use
most of the typing information available in a system if we
provide the ability to import such information. This is not
the only lesson we have learned in our journey, Sections 3
to 6 provide a view on the current status and weaknesses of
modern Haskell in a set of areas.

2 Type Level Schemas in Mu
Mu is not a single package, but a constellation of them. In
fact, Mu offers libraries for different functional program-
ming languages, including Scala and Haskell. In this paper,
whenever we refer to “Mu”, we refer to the Haskell version.

The base packages provide a unified language for describ-
ing schemas of data – package mu-schema – and service
definition along with server implementations – package mu-
rpc. Most of the protocols we support include this separation
between data and behavior, Figure 1 shows an example writ-
ten in Protocol Buffers. The rest of the packages provide the
support for different protocols: gRPC with Avro or Protocol
1https://higherkindness.io/mu-haskell/
2https://grpc.io/
3https://graphql.github.io/
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message PersonRequest { int64 id = 1; }
message Person { string name = 1; int32 age = 2; }
service PersonService {
rpc getPerson (PersonRequest) returns (Person);
rpc newPerson (Person) returns (PersonRequest);
}

Figure 1. Description of service using Protocol Buffers

data TypeDef typeName fieldName
= DRecord typeName [FieldDef typeName fieldName ]
| DEnum typeName [ChoiceDef fieldName ]
| DSimple (FieldType typeName)

newtype ChoiceDef fieldName
= ChoiceDef fieldName

data FieldDef typeName fieldName
= FieldDef fieldName (FieldType typeName)

data FieldType typeName
= TNull
| TPrimitive Type
| TSchematic typeName
| TOption (FieldType typeName)
| TList (FieldType typeName)
| TUnion [FieldType typeName ]

Figure 2. Schema definition language

Buffers serialization, and GraphQL; in most cases they “just”
consume the information from the core packages.

2.1 Describing Terms
Schemas of data serialized in the wire – like PersonRequest
and Person in the example heading this section – are de-
scribed using the language in Figure 2. Note that although
we define types and constructors in the term level, these
are intended to be used only promoted [32] to the type level.
Figure 5a shows how these two types defined in Figure 1 are
translated into this language.

As a design choice we leave the types representing names
open. Users of the library can decide between using a more
stringy-typed approach – using Symbol, the promoted ver-
sion of String – or a more strongly-typed approach – by
using an enumeration for that specific set of field or type
names. Note that even with the former approach type names
are checked for existence at compile time.
The data itself is represented (or interpreted) as a Term

from Figure 3. For example, a record is interpreted into a

type family (sch :: Schema t f ) :/: (name :: t)
:: TypeDef t f where

`[ ] :/: name = TypeError . . .

(̀DRecord name fields :̀ rest) :/: name
=`DRecord name fields

(̀DEnum name choices :̀ rest) :/: name
=`DEnum name choices

(other :̀ rest) :/: name = rest :/: name

data Term (sch :: Schema t f ) (t :: TypeDef t f ) where
TRecord :: NP (Field sch) args

→ Term sch (̀DRecord name args)
TEnum :: NS Proxy choices

→ Term sch (̀DEnum name choices)
TSimple :: FieldValue sch t

→ Term sch (̀DSimple t)
data Field (sch :: Schema t f ) (f :: FieldDef t f ) where
Field :: FieldValue sch t

→ Field sch (̀ FieldDef name t)
data FieldValue (sch :: Schema t f ) (t :: FieldType t) where
FNull :: FieldValue sch T̀Null
FPrimitive :: t

→ FieldValue sch (̀TPrimitive t)
FSchematic :: Term sch (sch :/: t)

→ FieldValue sch (̀TSchematic t)
FOption :: Maybe (FieldValue sch t)

→ FieldValue sch (̀TOption t)
FList :: [FieldValue sch t ]

→ FieldValue sch (̀TList t)
FUnion :: NS (FieldValue sch) choices

→ FieldValue sch (̀TUnion choices)

Figure 3. Terms, interpretations of schemas

class ToSchema (sch :: Schema typeName fieldName)
(sty :: typeName) (t :: Type)
| sch t → sty where

toSchema :: t → Term sch (sch :/: sty)

Figure 4. Conversion from Haskell type to Term

product4 of the results of interpreting its fields; the inter-
pretation of a field with type`TList t is a list of values of
the interpretation of t; and so on. Figure 5b shows a specific
value for Person represented as a Term. One important case is
the reference from one type to another in the same schema,
given by the FSchematic constructor. In that case we need to
find the definition of such type in the whole schema, this is
the duty of the (:/:) type family.
4The types NP and NS come from the generics-sop library [6].

2



Describing Microservices using Modern Haskell (Experience Report) Haskell ’20, August 27, 2020, Virtual Event, USA

type Schema
=`[̀ DRecord "PersonRequest"

`[̀ FieldDef "id" (̀TPrimitive Int64) ]
, `DRecord "Person"`

`[̀ FieldDef "name" (̀TPrimitive String)
, F̀ieldDef "age" (̀TPrimitive Int32) ] ]

(a) Type level schema description

authors :: [Term Schema (Schema :/: "Person") ]
authors

= [TRecord ( Field (FPrimitive "Alejandro")
:∗ Field (FPrimitive 32) :∗ Nil)

, TRecord ( Field (FPrimitive "Flavio")
:∗ Field (FPrimitive 29) :∗ Nil) ]

(b) Example of Person as a term

data Person = Person {name :: String, age :: Int32 }
instance ToSchema Schema "Person" Person where
toSchema Person {name, age }

= TRecord ( Field (FPrimitive name)
:∗ Field (FPrimitive age) :∗ Nil)

(c) Conversion to a regular data type

Figure 5. Examples using PersonService’s schema

We do not expect programmers to manipulate those Terms
directly (although using optics and overloaded labels this
is feasible, see Section 3.1); instead we provide a pair of
type classes to define conversion to usual Haskell types. In
Figure 4 we show the definition of the class conversion to
Term, the one in the other direction is completely symmetric.
Notice the use of (:/:) to look up the information associated
to the given type name sty in the whole schema sch. Figure 5c
shows the instance corresponding to our Person.

What we have here is nothing else than (data type) generic
programming: we define the universe of our types (Figure 2),
their interpretation (Figure 3), and the conversion to the
generic representation (Figure 4). The style we follow here
is closer to the SOP representation [6], extended for mutual
recursion [18] in the schema. By using “generic generic pro-
gramming” [16] we can then turn the representation in terms
of the built-in Generics module in GHC [15] into our own.

Importing schemas. At the beginning of this section we
have shown the definition of a service, including the schema
of the data, in the Protocol Buffers language. This kind of
descriptions is already available for many services, but it
is quite tiresome to translate them to Mu’s type level lan-
guage. For that reason, we have implemented several im-
porters which read a file in one of the supported formats, and
translates it to types, using Template Haskell [27].

type PersonService
=`[ `Method "getPerson"

`[̀ ArgSingle`Nothing "PersonRequest"]
(̀RetSingle "Person")

,`Method "newPerson"

`[̀ ArgSingle`Nothing "Person"]
(̀RetSingle "PersonRequest") ]

(a) Type level service description

personServer
= getPerson :⟨|⟩: newPerson :⟨|⟩: 𝐻0
where
getPerson (PersonRequest ident) = do

p← execute "SELECT * FROM Person ..."

[":id" := ident ]
pure p

newPerson (Person name age) = do
ident ← execute "INSERT INTO Person ..."

pure (PersonRequest ident)

(b) Handlers for PersonService

Figure 6. Examples using PersonService

This gives us one additional freedom: since we know al-
most no user of the library specifies the types in Figure 2
directly, we can change them without a lot of fuss. In fact,
we have done it on each new major release of the library.

Automatically importing from a schema language helps
us to keep in sync with the contract agreed on a system,
in which several parts need to communicate. This is a well-
known pain-point in industry, which has prompted the de-
velopment of solutions such as Confluent’s Schema Registry
for Apache Kafka.5

2.2 Describing Services and Servers
The description of services, that is, the set of functionality
that a client may request from a server, is encoded in the type
level, using the same techniques as the schemas. Figure 6a
shows how to encode PersonService from Figure 1 – notice
the similarities with Figure 5a – we have a list of methods,
each with their corresponding list of arguments and return
type. The additional ArgSingle and RetSingle are required to
account for the possibility in most RPC frameworks to return
not just one, but a stream of values as result of a method.
The interesting bit in this case is what an interpretation

of that definition means: instead of data, what we need is
the behavior associated to the service. In other words, an
implementation. Figure 7 shows an extract of the definition
of handlers for a service made up from a set of methods.
HandlersT follows the familiar shape of a heterogeneous list,
5https://docs.confluent.io/current/schema-registry
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data HandlersT inh methods m hs where
𝐻0 :: HandlersT inh`[ ] m`[ ]
(:⟨|⟩:) :: Handles as r m h

⇒ (inh→ h) → HandlersT inh ms m hs
→ HandlersT inh (̀Method n as r :̀ ms) m (h :̀ hs)

instance (FromRef ref t,Handles args ret m h,
handler ∼ (t → h))

⇒ Handles (̀ArgSingle aname ref :̀ args) ret m handler
instance (FromRef ref t,Handles args ret m h,

handler ∼ (ConduitT () t m () → h))
⇒ Handles (̀ArgStream aname ref :̀ args) ret m handler

instance (handler ∼ m ())
⇒ Handles`[ ] R̀etNothing m handler

instance (ToRef ref v, handler ∼ m v)
⇒ Handles`[ ] (̀RetSingle ref ) m handler

instance (ToRef ref v,
handler ∼ (ConduitT v Void m () → m ()))

⇒ Handles`[ ] (̀RetStream ref ) m handler

Figure 7. Handlers for services

each element being one such handler. The type required to
implement a method changes depending on the number of
arguments, the way they are received – as a single value
or as a stream of values –, and the information they must
return – now to a single or a stream of values we add the
possibility of returning nothing. The FromRef and ToRef
type classes allow users of the library to choose between
consuming and providing Terms, or use a regular Haskell
type tied to the schema using FromSchema and ToSchema as
discussed in Section 2.
In the case of PersonService, the implementation6 given

in Figure 6b only receives or returns single results. In addi-
tion, we make use of the regular Haskell types introduced in
Figure 5c.

In order to support GraphQL, the execution of a service –
called a resolver in that case – may continue with another
service, if we need to request further information. We have
modeled this fact after attribute grammars [5, 30], where
each service receives the result of its “parent” as an inher-
ited attribute (hence the inh parameter in HandlersT ) and
synthesizes the result.

2.3 Conclusion
The main lesson we have learned here is that by rephrasing
some well-known ideas in academia in terms of well-known
technologies in industry we can bridge the gap between
these two worlds. In this case, by using type level and generic
programming to describe data schemas.
6The code in the implementation does not work, it is just pseudocode whose
database access is inspired by the sqlite-simple package.

There is also lots of information about the contract of
an interface laying around: database schemas, OpenAPI ser-
vice definitions, Kafka Registry schemas, among others. As
proponents of a strongly-typed discipline, we should take
advantage of that information and try to integrate as much
of it as possible in our code.

3 Lesson #1: Type Applications vs. Labels
Schemas describe in depth both the shape of the data ex-
changed by the services, and the arguments and result types
of the different methods, as we have discussed in Section 2.
In many cases we can leverage this information to directly
execute or compute. The main two examples in Mu are call-
ing a method – that is, working as a client instead of as a
server –, and inspecting or modifying a field.

Our first approach was to use visible type application [10]
to specify the method or field in question. This usage is not
novel, it had been reported as a way to generically derive
traversals [13]. As an example,Mu provides a gRpcCallwhich
given the service description, the method name, and any
required arguments, issues a call to the corresponding gRPC
server. No further information is required, since serialization
and communication code can be derived from that piece of
type level information.

response :: GRpcReply Person
← gRpcCall @PersonService @"getPerson" client req

Having both PersonService and "getPerson" at hand, the
library knows in which possible forms the request param-
eters may be provided. Note that we still need to annotate
the return type, an issue we shall return to in Section 6. The
additional client argument represents the connection to the
server, including the server and port to connect to and the
route to the endpoint, among other data.
Although quite direct, we found a number of problems

with exposing the client API in this form:
1. We are forced to provide arguments in a specific order
– first type arguments, then value arguments – unless
we require the use of the RankNTypes extension. In the
example above, it is unsatisfactory to provide the client
parameter after the name of the method to be called;
one would expect going from general to particular –
connection, service, method, parameters.

2. The syntax feels alien tomanyHaskellers. For example,
the name of the method appears after the @ symbol
and wrapped in quotes.

The usual workaround – requiring Proxy values instead of
using type application – does not really solve the problem.
The programmer has to write more boilerplate, and still has
to mention the types:

response :: GRpcReply Person
← gRpcCall client (Proxy :: Proxy Service)

(Proxy :: Proxy "getPerson") req

4
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The first actual solution came in the form of records which
were “filled” using data type generic programming. The pro-
grammer declares a data type with a single constructor, and
fields for every possible method in the service:

data Call = Call
{getPerson :: PersonRequest → IO (GRpcReply Person)
} deriving Generic

The buildService function generates one value of that type
given the type level information and the connection to the
server. The programmer can then access each of the methods
using regular record syntax.

do svc ← buildService@PersonService client
response← getPerson svc req

This solution is at least easier to automate; with some
Template Haskell the shape of the record can be derived from
the service definition. Alas, we end up having to replicate the
names and expected types of every method in the service.

3.1 Optics and Overloaded Labels
The optics package7 provides lenses, prisms, traversals, and
other kinds of composable data accessors following an opaque
design. That means that, in contrast to exposing the underly-
ing (higher-rank) types like the lens package does, optics are
wrapped into newtypes. The main advantage is improved
error reporting.

In our case, we took advantage of a small module integrat-
ing optics with the OverloadedLabels extension [11]. This
extension builds on the IsLabel type class, defined as:

class IsLabel (x :: Symbol) a where
fromLabel :: a

GHC then replaces any usage of #thing8 with a call of the
form fromLabel @"thing" in a similar vein to how numeric
literals are transformed into calls to fromInteger .
To solve the problem of gRPC clients, we use this mech-

anism to provide a set of getters – lenses with no setter –
from GRpcClient to the various methods in the correspond-
ing service. Our previous call now reads a bit simpler, with
the client in first position, then the name of the method, and
finally the request parameters.

client ˆ. #getPerson $ req

Once you get this hammer, everything looks like a label.
Another place in which we have introduced overloaded la-
bels is the access to fields of a Term without the need of
creating an intermediate Haskell type. The variety of optics
helps us here: for record fields we provide lenses, but for
enumerations and unions we provide prisms instead.

7https://github.com/well-typed/optics
8At the moment of writing, those labels cannot start with a capital letter,
but there’s an on-going GHC proposal to lift that restriction.

The brighter future. Using overloaded labels still intro-
duces some alien syntax, namely the combination ˆ.# before
the name of the method. The RecordDotSyntax proposal [20]
introduces new syntax for getters and setters, and does so
in an extensible way, as OverloadedLabels. As a result, in a
near future the code above could become:

client .getPerson req

Such an interface is quite intuitive for most programmers.
At this point we want to stress one important design deci-

sion of both OverloadedLabels and RecordDotSyntax, which
is sometimes absent from the on-going debate around these
features. The use of a type class provides a path to define
“virtual” fields or labels, not backed up by or representing
any actual data, as we do with gRPC methods.

4 Lesson #2: GADTs Provide a Hard API
We make heavy use of GADTs in the definition of terms
following a schema and servers implementing a given service,
as we have discussed in Section 2.1. As in the case of Servant
[17], the core of the server API consists of a way to join
the different handlers. In the case of Mu, the order in which
those handlers should appear must coincide with the order
in which they appear in the service definition; other libraries
normalize the descriptions beforehand to order the fields by
name [1].

handler1 :⟨|⟩: handler2 :⟨|⟩: . . . :⟨|⟩: 𝐻0

Heterogeneous lists may pose no challenge for a expe-
rienced type level Haskell programmer; but they do pose
a challenge to less experienced users of our library. A less
experienced user is likely to make some small mistakes. She
may forget to add the final :⟨|⟩: 𝐻0 in the chain, or add a new
method in thewrong place, or swap the order of two handlers.
Such tiny mistakes can cause a cascade of quite frightening
and uninformative error messages, which overwhelm her
and create a stumbling block.

Workaround using tuples. As powerful as they are, het-
erogeneous lists pose a challenge to less experienced users.
In the Mu library we have turned into using the main het-
erogeneous data structure every beginner is aware of: tuples.
Converting between them is straightforward.

class ToHList p l | p→ l where
toHList :: p→ HList l

instance ToHList (a, b) `[a, b] where
toHList (x, y) = x :⟨|⟩: y :⟨|⟩: 𝐻0

instance ToHList (a, b, c) `[a, b, c ] where
toHList (x, y, z) = x :⟨|⟩: y :⟨|⟩: z :⟨|⟩: 𝐻0
-- and as many as you wish

As a result, the handlers for PersonService can be rewritten
as follows:

5
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personServer
= toHList (getPerson, newPerson)
where ... -- as before

One disadvantage of this approach is that we are limited
by the instances of ToHList, and ultimately by the length of
the tuples provided by the implementation.

Associating nameswithhandlers. Tuples solve the prob-
lem of manually writing (:⟨|⟩:) and 𝐻0, but the API still re-
quires matching the order of the handlers with the declara-
tion of methods. The second part of the solution: provide a
name-based interface, in which the programmer explicitly
matches handlers with the method they implement.

server (method @"newPerson" newPerson
,method @"getPerson" getPerson)

This adds some repetition to the code. However, we found
this repetition to be quite benefitial: the compiler can still
check that all methods have been implemented, and the
programmers gets the ability to order methods as they wish,
instead of being forced by the type level information.

5 Lesson #3: Type Level is Still Lacking
Mu uses type level schemas and service definitions exten-
sively (Section 2). In order to put them in use, lots of compu-
tation need to happen at compile time – in the type level: can
this Haskell type be turned into that schema type? Are han-
dlers for all the methods in the service readily available? In
this section we look at some of the lessons we have learned
while implementing those features.

5.1 Type Classes Live at the Top Level
Multi-parameter type classes [29] and type families [3] are
the two GHC features which provide type level computation.
The former is usually described as having more “relational”
style, whereas the latter feels more “functional”.
If one inspects the source code of Mu, though, it will be

hard to find a declaration of a type family. The main rea-
son is that type classes provide elaboration – that is, term
level code can be generated as produce of class resolution –
whereas type families do not [26]. Wemake heavy use of that
mechanism: for example, finding the handler for a method in
a server definition produces the code which runs that same
handler whenever a request is made for it.
Type classes that inspect a complex piece of data – like

our service definitions – end up “calling” other type classes
which take care of the sub-pieces. This is not a problem on
itself, after all chunking functionality in all sub-functions is
a good engineering practice. The problem is that type classes
are always defined at the top level – there is no notion of
local type class9 – so every parameter in the computation has
to be carried over through all those classes. That is, whereas

9Local instances have been proposed [7] but have never made into GHC.

at the term level local bindings can use the surrounding
environment,

f x y = case x of Blah→ g [ ]
Bluh→ ...

where g z = use x

the parameters have to be threaded when using type classes,

class F x y
instance G x `[ ] ⇒ F Blah y
instance ... ⇒ F Bluh y

class G x z

Note also that we are required to introduce a new type class
G in the top level environment. That pollutes such environ-
ment, whereas in the term level version the name g is simply
used locally. Furthermore, the definition of that type class
include much more boilerplate that the term counterpart.

The more information one needs to consult, the more the
problem is exacerbated. As an extreme example, the GraphQL
layer for Mu defines the following type class,

class RunMethod m p whole chn sname ms hs

where every parameter except the last two are just “environ-
ment”.

Backpack. Much of the type level information threaded
through these type classes stays constant within the scope of
an application. For example, most people would only write
a server for one single service definition per application, not
several of them. Instead of parametrizing each single class,
we could parametrize the entire module using a Backpack
mix-in [31]. Alas, Backpack has not been widely adopted.
For that reason we have not pursued that path further, since
that would introduce an entry barrier for potential users.

5.2 Lack of Abstraction Mechanisms
The language for type level programming in GHC is essen-
tially first order. In other words, no map over type level lists,
no generic traversals over other promoted data types. This
problem has already been reported for type families [12],
alongside with a solution: matchable arrows. In theory, type
classes should require a simpler approach, since they do not
suffer from the problem of appearing saturated, as type fam-
ilies do. In addition, quantified class constraints [2] extend
the power of type class resolution.

Unfortunately, in practice one stumbles upon several rocks:
(1) inference works badly, so in many cases we need to use
manual type application; and (2) type classes may appear
unsaturated, but there are no combinators to reorder the
parameters, like we can do in the term level:

flip :: (a→ b→ c) → b→ a→ c
flip f y x = f x y

6
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The order in which one defines the type class becomes thus
extremely important. If one needs to partially apply that
class in two different ways, the bets are off. In the specific
case of Mu, we end up duplicating the code which traverses
schemas or service definitions.

6 Lesson #4: Ambiguous Types
Type error messages are a salient part of a compiler’s user
experience. There is extensive literature about discussing
this aspect of GHC [23, 24, 33] or other functional languages
in general [4, 21, 34]. Almost all of this research is focused
on the kind of errors stemming from conflicting information,
like passing True to a function that expects an Integer . Little
attention has been paid to ambiguity.
As a particular example, suppose we take a server defini-

tion where some of the implementations are given by ⊥, as
is often done to mark parts of the program yet to be written.

server (method @"method1" handler1
,method @"method2" ⊥)

We are greeted with a set of error messages similar to:10

Ambiguous type variable ’t1’
prevents the constraint
’(FromSchema <bigtype> "type" t1)’
from being solved.
Probable fix: use a type annotation
to specify what ’t1’ should be.
These potential instances exist:
instance forall typeName fieldName t ...
-- Defined in ’Mu.Schema.Class’
... plus three instances involving
out-of-scope types

The problem here is that by not fixing the type of the handler,
the compiler is not able to resolve the serialization from and
to Mu’s Terms to Haskell types.

The compiler is correct in rejecting this program: the vari-
able is in fact ambiguous and the code should not be accepted
until such ambiguity is resolved. On the other hand, the er-
ror messages are quite daunting, and there is no way to
customize them, in contrast to TypeError constraints avail-
able for conflicts. It may be that, when we think about this
problem, we think of “clearly wrong” programs such as:

f :: (Read a, Show a) ⇒ String → String
f = show ◦ read

But once complex type level computation enters the game,
it becomes easier to write terms which do not fix their types
(or kinds) completely. This in turn stops class constraints
from resolving and type families from reducing, in a sort of
domino effect. Unfortunately, although some research has
been done on this problem [25, 28], none of it has reached
the GHC compiler (yet).

10Slightly edited for readability.

6.1 Implicit Kind Quantification
Kind polymorphism11 brings parametric polymorphism to
type level programming. However, that kind polymorphism
may not be directly visible in the code; GHC may introduce
inferred type variables [10] while inferring the most general
kind for a signature or type class.
Unfortunately, such general inference is a double-edged

sword. An instance may not be matched due to some un-
known kinds, which are not even visible in type errors. In-
ference may lead to a “too general” type when we intended
the kinds of two of the arguments to coincide. The following
code, extracted from Mu’s gRPC client support, shows that
sometimes we need to monomorphize the kinds to make the
compiler accept our code:
instance forall (sch :: Schema Symbol Symbol)

(sty :: Symbol) (r :: Type) .
· · · ⇒ GRpcInputWrapper `MsgAvro (̀ SchemaRef sch sty) r

Had we left out the explicit quantification, it would have
been inferred to be:
instance forall (sch :: Schema t f ) (sty :: s) (r :: Type) . . .
Note how the kinds of sch and sty mention distinct kind
variables, so one more kind variable needs to be resolved in
order to know whether this instance matches. This might
lead to more ambiguous kinds, as discussed above.

This behavior seems to have surprised more than us. Start-
ing with version 8.10, an accepted GHC proposal [8] intro-
duces changes to kind quantification, making it a bit “less
implicit”.

7 Conclusion
We have presented Mu, a library for developing microser-
vices in Haskell. Its design has been influenced by several
ideas stemming from academia: data schemas are represented
at the type level using generic programming techniques, com-
plex servers are defined as attribute grammars. We have also
identified some weaknesses of the current programming ex-
perience in GHC/Haskell whenmaking use of those language
extensions.
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